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The problem on the temperature field of a liquid in a well has been asymptotically solved for the case of a
constant temperature gradient in it. Expressions for calculating the temperature of a liquid in a well in the
zero and first approximations have been obtained. It is shown that the asymptotic solution of the problem
considered in the zero approximation makes it possible to obtain an algorithm involving averaging of the tem-
perature of a liquid in a well in the case where the velocity profile of the liquid is constant. The space and
time temperature distributions of a liquid in a well have been calculated, and the contribution of various
physical processes to them has been analyzed.

The study of the nonstationary temperature fields in a liquid or a gas flowing in pipes is a fundamental prob-
lem of thermal physics because knowledge of these fields is necessary for calculating various engineering units, espe-
cially those that are used in pipeline transport and in oil and gas wells. At present, the possibility of calculating the
temperature θ of a liquid or a gas in a well without regard for the radial distribution of their velocity in the well ex-
ists [1–5]; however, there is no theory that would allow one to calculate the temperature of a liquid in a well with
account for the actual distribution of its velocity. A modified asymptotic method for solving the main problem of tem-
perature well logging has been proposed and used in [3–5]. This method made it possible to determine the radial dis-
tribution of the temperature in the shaft of a working well.

The aim of the present work is to asymptotically solve the problem on the temperature field in the shaft of a
working well with account for the velocity profile of a liquid or a gas in the well for the case of a constant tempera-
ture gradient in it.

As in previous works, it was assumed that the environment is homogeneous and anisotropic, the temperature
θ1 in distant rocks changes linearly with depth, and the seasonal variations in the temperature on the surface do not
influence the deep regions considered. It was also assumed for simplicity that the temperature gradient remains un-
changed: ∂θ1

 ⁄ ∂zd = ∂θ ⁄ ∂zd = –Γ, the velocity of a liquid in the shaft of a well depends on the distance to the well
axis v = v0R(rd) and the derivative of the temperature with respect to the radial coordinate on the zd axis of the cylin-
drical coordinate system, pointing upwards at the center of the well, is equal to zero (symmetry condition).

Mathematical Formulation of the Problem. The mathematical model considered includes the equation for
heat conductivity in the mass surrounding the shaft of the well

ρ1c1 
∂θ1

∂τ
 = λ1r 

1

rd
 

∂
∂rd

 



rd 

∂θ1

∂rd




 ,   rd > r0 ,   τ > 0 , (1)

and the equation for convective heat exchange between the liquid (which is multiphase in the general case) and the
heat sources in the shaft

ρc 
∂θ
∂τ

 = λr 
1
rd
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∂rd
 



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∂θ
∂rd




 + ρcv0R (rd) Γ + q1 ,   rd < r0 ,   τ > 0 . (2)
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The density of sources is determined by the expression

q1 = − ηcρ2
gv0R (rd) + qd , (3)

in which the term −ηcρ2gv0R(rd) defines the adiabatic effect in the rising stream and qd accounts for the effects from
the other heat sources, e.g., the temperature effect of the phase transitions caused by the liberation of gas. On condi-
tion that the temperature gradient remain unchanged, the second derivative of the temperature with respect to the co-
ordinate zd in Eqs. (1) and (2) is equal to zero. It was assumed that, at the interface between the shaft and the
surrounding mass, the temperatures and heat flows are equal:

θrd=r0
 = θ1rd=r0

(4)

λr 
∂θ
∂rd



rd=r0

 = λ1r 
∂θ1

∂rd



rd=r0

 . (5)

The initial conditions correspond to the nonperturbed, natural earth temperature that increases linearly with increase in
the depth zd

θτ=0 = θ1τ=0 = θ01 − Γzd , (6)

and is equal to the temperature at the points of the surrounding mass that are positioned at a large distance from the
shaft

θ1rd→ ∞ = θ01 − Γzd . (7)

It was assumed that the velocity of the liquid in the shaft depends on the distance to the axis of the well:

v = v0R (rd) . (8)

Taking into account the concrete dependence of the velocity of the liquid on the radial coordinate, we constructed
computational formulas for laminar and turbulent flows.

Using the relations r = rd
 ⁄ r0, z = zd

 ⁄ D, t = τλ1r/(ρ1c1r0
2),  ε = λ1r

 ⁄ λr, T1 = (θ1 − θ01 + Grzd)/θ0, T =
(θ − θ01 + Grzd)/θ0, χ = c1ρ1/(cρ), and γ = r0

 ⁄ D, we brought problem (1)–(8) to the dimensionless form

∂T1

∂t
 = 

1

r
 

∂
∂r

 



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∂T1

∂r




 , (9)

∂T

∂t
 = 

χ
ε

 
1
r

 
∂
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


r 

∂T

∂r




 + (G − H) R (r) + Q (r, t) , (10)

Tr=1 = T1r=1 , (11)

∂T

∂r



r=1

 = ε 
∂T1

∂r



r=1

 , (12)

Tt=0 = T1t=0 = 0 , (13)
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T1r→ ∞ = 0 , (14)

where G = PeγΓD ⁄ θ0, Pe = v0r0
 ⁄ a1r, Q(r, t) = χr0

2qd/(θ0λ1r), and H = Peηρgr0
 ⁄ θ0. From these formulas follows that

it is appropriate to use ΓD for the quantity θ0.
It is very difficult to analytically solve the problem in this formulation. Therefore the asymptotic method was

used for its solution. We introduced the asymptotic-expansion parameter ε = λ1r
 ⁄ λr, where λ1r is the heat conductivity

of the rock and λr is the turbulent heat conductivity of the liquid flow. Under actual conditions, the turbulent heat
conductivity, which is due to the movement of liquid regions relative to each other, substantially exceeds (by 2–3
times) the heat conductivity in the rock [4]. In a turbulent flow, the asymptotic expansion parameter is small and equal
to ε D 0.01–0.001 [4]. However, the parameter ε need not be small since the radius of convergence increases with time
as √t . This provides an acceptable accuracy of calculations at ε D 1 and makes it possible to use the solutions, pre-
sented below, obtained in the zero and first approximations for a laminar flow. As the expansion parameter, the formal
parameter ε ′, introduced artificially by the cofactor λ1r

 ⁄ λr, can be used, which makes the substantiation of the small-
ness of the ratio between the heat conductivities unnecessary and makes it possible to obtain results coincident with
the results presented below.

Problem (9)–(14) was solved by asymptotic expansion in terms of the parameter ε

T = T
(0)

 + εT
(1)

 + ε2
T

(2)
 + ... , (15)

T1 = T1
(0)

 + εT1
(1)

 + ε2
T1

(2)
 + ... , (16)

where the subscripts of the dimensionless temperature T denote the number of a region and the superscripts denote the
ordinal number of an approximation. Substitution of (16) into (9) gives
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 − 
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


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

 = 0 . (17)

In a similar manner, from Eqs. (10) and (15) we find
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

 +  ∑ 

i=1
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

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∂T
(i−1)

∂t
 − 

χ
r

 
∂
∂r

 



r 

∂T
(i)

∂r




 − [R (r) (G − H) + Q (r, t)] δ1,i




 = 0 . (18)

The boundary conditions take the form


T

(0)r=1 − T1
(0)r=1


 +  ∑ 

i=1

∞

 εi
 T

(i)r=1 − T1
(i)r=1


 = 0 , (19)

∂T
(0)

∂r



r=1

 +  ∑ 

i=1

∞

 εi
 




∂T
(i)

∂r



r=1

 −
∂T1

(i−1)

∂r



r=1

    



 = 0 , (20)

T
(0)t=0 +  ∑ 

i=1

∞

 εi
 T

(i)t=0 = 0 ,   T1
(0)t=0 +  ∑ 

i=1

∞

 εi
 T1

(i)t=0 = 0 , (21)

T1
(0)r→ ∞ +  ∑ 

i=1

∞

 εi
 T1

(i)r→ ∞ = 0 . (22)
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Formulation of the Problem in the Zero Approximation. It is assumed that ε = 0 in (18); then

− 
χ
r

 
∂
∂r

 



r 

∂T
(0)

∂r




 = 0 . (23)

From (23) we obtain the expression for the radial temperature gradient in the zero approximation:

∂T
(0)

∂r
 = 

C1

r
 . (24)

It is assumed that the solution is limited at r = 0. In this case, it follows from (24) that the integration constant C1
is equal to zero; therefore,

∂T
(0)

∂r
 = 0 . (25)

It follows from (25) that, in the zero approximation, the temperature is independent of the radial coordinate r and is
a function of the time t:

T
(0)

 = T
(0)

 (t) . (26)

Assuming that ε = 0 in (17), we obtain the expression for the zero expansion coefficient T1
(0):

∂T1
(0)

∂t
 — 

1

r
 
∂
∂r

 



r 

∂T1
(0)

∂r




 = 0 . (27)

Using (23), from (18) we obtain the equation for the zero coefficient of expansion of the temperature in the
shaft:

χ
r

 
∂
∂r

 



r 

∂T
(1)

∂r




 = 

∂T
(0)

∂t
 − R (r) (G − H) − Q (r, t) . (28)

Equation (28) is "coupled" because it contains the expansion coefficients of the zero and first orders T(0) and T(1). This
makes the solution of the corresponding problems difficult. Below are transformations that make it possible to uncou-
ple Eq. (28) by elimination of the term T(1) from it. Equation (28) will take the form

χ
r

 
∂
∂r

 



r 

∂T
(1)

∂r




 = A1 (t) − R (r) A2 (t) − Q (r, t) , (29)

where the coefficients A1 and A2 represent time functions independent of the radial coordinate r:

A1 (t) = 
∂T

(0)

∂t
 ,   A2 (t) = G − H . (30)

Integrating (29), we obtain an expression for the radial derivative of the first coefficient of the asymptotic expansion

∂T
(1)

∂r
 = 

rA1 (t)
2χ

 − 
A2 (t) R1 (r)

rχ
 − 

Q1 (r, t)
rχ

 .
(31)

On condition (20), from (31) follows that
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∂T
(1)

∂r



r=1

 =
∂T1

(0)

∂r



r=1

 = 
A1 (t)

2χ
 − 

A2 (t) R1 (1)
χ

 − 
Q1 (1, t)

χ
 , (32)

where R1(r) = ∫ 
0

r

r ′R(r ′)dr ′ and Q1(r, t) = ∫ 
0

r

r ′Q(r ′, t)dr ′. Substitution of (30) into (32) gives an equation containing

only the zero-order expansion coefficients:

∂T
(0)

∂t
 − 2 (G − H) R1 (1) − 2Q1 (1, t) = 2χ 

∂T1
(0)

∂r



r=1

 ,   r < 1 ,   t > 0 . (33)

Thus, the above transformations allowed us to "uncouple" initial equation (28). The finite formulation of the
problem in the zero approximation includes, along with (33), the following equations representing the initial and
boundary conditions:

∂T1
(0)

∂t
 − 

1

r
 

∂
∂r

 



r 

∂T1
(0)

∂r




 = 0 ,   r > 1 ,   t > 0 , (34)

T
(0)

 = T1
(0)r=1 , (35)

T
(0)t=0 = T1

(0)t=0 = 0 , (36)

T1
(0)r→ ∞ = 0 . (37)

Problem (33)–(37) is characterized by the existence of the trace of the derivative of the temperature with respect to
the outer region in Eq. (33).

Boundary-Value Problem for the First Expansion Coefficients. For the first expansion coefficient, Eq. (18)
takes the form

∂T
(1)

∂t
 − 

χ
r

 
∂
∂r

 



r 

∂T
(2)

∂r




 = 0 ,   r < 1 ,   t > 0 , (38)

and is "coupled" because includes the first- and second-order expansion coefficients. Let us "uncouple" Eqs. (38).
From (31) we obtain

T
(1)

 = 
r
2

4χ
 A1 (t) − 

1
χ

 A2 (t) R2 (r) − 
1
χ

 Q2 (r, t) + B (t) . (39)

Substitution of (39) into (38) gives the expression for the radial derivative of the second expansion coefficient:

∂T
(2)

∂r
 = 

r
3

16χ2 
∂A1 (t)

∂t
 − 

R3 (r)

χ2  
∂A2 (t)

∂t
 − 

1

χ2 
∂Q3 (r, t)

∂t
 + 

r

2χ
 
∂B (t)

∂r
 ,   r < 1 ,   t > 0 , (40)

where

R2 (r) = ∫ 
0

r

r′
−1

 R1 (r′) dr′ ;   R3 (r) = r
−1

 ∫ 
0

r

r′ R2 (r′) dr′ ;   Q2 (r, t) = ∫ 
0

r

r′
−1

 Q1 (r′, t) dr′ ;
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Q3 (r, t) = r
−1

 ∫ 

0

r

r′ Q2 (r′, t) dr′ .

Using condition (20) at i = 1, we obtain

∂T
(2)

∂r






r=1

 = 
1

16χ2 
∂A1 (t)

∂t
 − 

R3 (1)

χ2  
∂A2 (t)

∂t
 − 

1

χ2 
∂Q3 (1, t)

∂t
 + 

1

2χ
 
∂B (t)

∂t
 =

∂T1
(1)

∂r






r=1

 . (41)

If the initial conditions are known, one can determine the one unknown coefficient B(t) in Eq. (41) and, by doing so,
determine T(1) and thus solve the problem considered. However, it makes sense to formulate the boundary-value prob-
lem for the first expansion coefficient T(1). Differentiating (39) over t and substituting the expression obtained into
(41), we obtain, using (30), the finite equation for the first expansion coefficient, containing the imputation of the de-
rivative of the first expansion coefficient with respect to the environment:

∂T
(1)

∂t
 + 

1 − 2r
2

8χ
 
∂2

 T
(0)

∂t
2  + 

1

χ
 
∂ [Q2 (r, t) − 2Q3 (1, t)]

∂t
 = 2χ 

∂T1
(1)

∂r








r=1

 ,   r < 1 ,   t > 0 . (42)

The mathematical model of the problem for the first expansion coefficients also includes the equation for the environ-
ment

∂T1
(1)

∂t
 − 

1

r
 

∂
∂r

 



r 

∂T1
(1)

∂r




 = 0 ,   r > 1 ,   t > 0 , (43)

the condition at the interface

T
(1)r=1 = T1

(1)r=1 (44)

and the condition at infinity

T1
(1)r→ ∞ = 0 . (45)

The problem considered is solved in the form of (39). In this case, the initial conditions that were formulated for me-
dium temperatures or for the temperatures at given points must be changed:

sT
(1)
tt=0 = T1

(1)t=0 = 0 ,   T
(1)r=r1,t=0 = T1

(1)t=0 = 0 . (46)

The initial condition or the value of the coordinate r1 at which this condition is fulfilled is determined additionally.
Solution of the Problem in the Zero Approximation. Using the Laplace–Carson transform

Tj
(0)im

 = p ∫ 

0

∞

exp (− pt) Tj
(0)

 (t) dt (47)

we write problem (33)–(37) in the image space

pT1
(0)im

 − 
1

r
 

∂
∂r

 



r 

∂T1
(0)im

∂r




 = 0 ,   r > 1 ,   t > 0 , (48)
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pT
(0)im

 − 2 (G − H) R1 (1) − 2Q1
im

 (1, p) = 2χ 
∂T1

(0)im

∂r



r=1

 ,   r < 1 ,   t > 0 , (49)

T
(0)im

 = T1
(0)imr=1 , (50)

T1
(0)imr→ ∞ = 0 . (51)

The solution of Eq. (48) is expressed in terms of the zero-order Bessel function of the imaginary argument.
Using (50), we obtain

T1
(0)im

 = 
K0 (r √p )
K0 (√p )

 T
(0)im

 , (52)

∂T1
(0)im

∂r



r=1

 = − √p  
K1 (√p )
K0 (√p )

 T
(0)im

 = − √p  kT
(0)im

 , (53)

where k = k(p) = K1(√p )/K0(√p ). Taking into account (53), we represent Eq. (49) for T(0)im in the form

pT
(0)im

 − 2 (G − H) R1 (1) − 2Q1
im

 (1, p) = − 2χk √p  T
(0)im

 ,   r < 1 . (54)

Equation (54) is solved as

T
(0)im

 = 2 
(G − H) R1 (1) + Q1

im
 (1, p)

p + 2χk √p
 ,   r < 1 . (55)

Substitution of (55) into (52) gives the solution for the outer region

T1
(0)im

 = 2 
K0 (r √p )
K0 (√p)

 




(G − H) R1 (1) + Q1
im

 (1, p)
p + 2χk √p




 ,   r > 1 . (56)

Expressions (55) and (56) represent an exact solution of the problem in the zero approximation in the image space. It
makes it possible to determine the temperatures averaged over the cross section of a well. This solution is identical,
in the particular case of a constant velocity profile in the absence of sources, to the solution presented in [2, 3]. It
follows herefrom that, due to the appropriate choice of the asymptotic expansion parameter, the solution in the zero
approximation can be used for calculating the temperature for large and small times, despite the fact that the method
considered provides obtaining results only for large times.

Construction of the Solution for the First Expansion Coefficients. In the Laplace–Carson image space,
problem (42)–(46) for the first expansion coefficients takes the form

pT1
(1)im

 − 
1

r
 

∂
∂r

 



r 

∂T1
(1)im

∂r




 = 0 ,   r > 1 , (57)

p T
(1)im

 − T
(1)

 (0) + 
1 − 2r

2

8χ
 



p

2
T

(0)im
 − p 

∂T
(0)

∂t
 (t = 0)




 +
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+ 
p

χ
 Q2

im
 (r, p) − 2Q3

im
 (1, p) − Q2 (r, 0) + 2Q3 (1, 0) = 2χ 

∂T1
(1)im

∂r



r=1

 ,   r < 1 , (58)

T
(1)imr=1 = T1

(1)imr=1 , (59)

T1
(1)imr→ ∞ = 0 . (60)

The solution of Eq. (57) is expressed in terms of the zero-order Bessel function. By analogy with the zero
approximation, we represent the solution for an oil pool and its derivative at the boundary r = 1:

T1
(1)im

 = T
(1)imr=1 

K0 (r √p )
K0 (√p )

 ,   
∂T1

(1)im

∂r



r=1

 = − √p  kT
(1)imr=1 . (61)

The rate of change in the temperature at the initial instant of time ∂T(0) ⁄ ∂t (t = 0) is determined from Eq.
(33). Substituting (61) into (58), we obtain the equation for T(1)im:

p T
(1)im

 − T
(1)

 (0) + 
1 − 2r

2

8χ
 p

2
T

(0)im
 − 2p ((G − H) R1 (1) + Q1 (1, 0)) +

+ 
p
χ

 Q2
im

 (r, p) − 2Q3
im

 (1, p) − Q2 (r, 0) + 2Q3 (1, 0) = − 2χk √p  T
(1)imr=1 . (62)

From (42) and (31), it follows that

T
(1)im

 = 
r
2

4χ
 pT

(0)im
 − 

R2 (r)
χ

 (G − H) − 
1
χ

 Q2
im

 (r, p) + B
im

 (p) . (63)

Substituting (63) into (62), we determine the coefficient Bim(p) in the image space:

B
im

 (p) = (√p  + 2χk)−1
 



√p  B (0) − 

p
8χ

 (√p  + 4χk) T(0)im
 + 

1
4χ

 (√p  R1 (1) + 8χkR2 (1)) (G − H) +

+ 
√p

4χ
 Q1 (1, 0) + 2kQ2

im
 (1, p) + 

2 √p
χ

 [Q3
im

 (1, p) − Q3 (1, 0)]



 . (64)

Substitution of (64) into (63) gives the expression for the first expansion coefficient in the well:

T
(1)im

 = 
1

8χ
 



2r

2
 − 1 − 

2χk

√p  + 2χk




 pT

(0)im
 + 




1 + 

2χk

√p  + 2χk
 



4 ⋅ 

R2 (1)
R1 (1)

 − 1



 − 4 ⋅ 

R2 (r)
R1 (1)




 
G − H

4χ
 R1 (1) +

+ 
1

χ
 Q2

im
 (r, p) + (√p  + 2χk)−1

 



√p  B (0) + 

√p

4χ
 Q1 (1, 0) + 2kQ2

im
 (1, p) + 

2 √p
χ

 Q3
im

 (1, p) − Q3 (1, 0)



 . (65)

Using (65) and (61), we determine the expression for the temperature in the environment:

T1
(1)im

 = 
K0 (r √p )
K0 (√p )

 




1

8χ
 

√p
√p  + 2χk

 



pT

(0)im
 + 2R1 (1) 




1 − 4 ⋅ 

R2 (1)
R1 (1)




  (G − H)




 + 

1

χ
 Q2

im
 (r, p) + (√p  + 2χk)−1

 ×
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× 



√p  B (0) + 

√p

4χ
 Q1 (1, 0) + 2kQ2

im
 (1, p) + 

2 √p
χ

 [Q3
im

 (1, p) − Q3 (1, 0)]







 . (66)

Expressions (65) and (66) represent exact solutions of the problem for the first expansion coefficient, where
T(0)im is determined from expression (55). The value of B(0) is dependent on initial conditions (46) and is determined
by the formulas

B (0) = 
8R3 (1) − 1

4χ
 (G − H) − 

1

4χ
 Q1 (1, 0) + 

2

χ
 Q3 (1, 0) ,

B (0) = 
2R2 (r1) − r1

2

2χ
 (G − H) − 

r1
2

2χ
 Q1 (1, 0) + 

1

χ
 Q2(r1, 0) .

(67)

However, according to (39), the choice of the initial conditions does not influence the radial distribution of the tem-
perature in the well. Expression (65) defines a developed temperature profile; therefore, the range of applicability of
the first approximation is limited to fairly large times. This restriction does not hold for the zero approximation be-
cause it determines the temperatures averaged over the cross section of the well.

If v0 is the average velocity, the integral R1(1) = 1/2. In this case, problem (33)–(37) and its solution for the
zero approximation (55), (56) are identical to the corresponding problem and its solution for a constant velocity inde-
pendent of the radial coordinate. This is a mathematical substantiation of the statement, used earlier, that, in such prob-
lems, the velocity averaged over the cross section of a well is constant independently of the radial profile. Hence it
follows that the obtaining of the limiting solution as ε → 0 is equivalent to the averaging of the desired solution. Note
that, in the case considered, it is difficult to average the initial problem by direct integration because of the depend-
ence of the velocity on the radial coordinate. The use of the asymptotic method in the case where the parameter p is
selected in the above-described way provides a realization of the procedure of averaging of the desired solution over
the cross section of the well. It should also be noted that it is impossible to compare the temperature profiles for the
first expansion coefficient in an analogous way.

In the case where there are no sources in a well, the solutions of the corresponding problems are simpler and
have the following form:

T
(0)im

 = 
2R1 (1) (G − H)

p + 2χk √p
 ,   r < 1 , (68)

T1
(0)im

 = 
2R1 (1) (G − H)

p + 2χk √p
 
K0 (r √p )
K0 (√p)

 ,   r > 1 , (69)

T
(1)im

 = 
1

8χ
 



2r

2
 − 1 − 

2χk

√p  + 2χk




 pT

(0)im
 + 




1 + 

2χk

√p  + 2χk
 



4 ⋅ 

R2 (1)
R1 (1)

 − 1



 − 4 ⋅ 

R2 (r)
R1 (1)




 ×

× 
G − H

4χ
 R1 (1) + 

√p  B (0)
√p  + 2χk

 , (70)

T1
(1)im

 = 
K0 (r √p )
K0 (√p )

 




1

8χ
 

√p
√p  + 2χk

 



pT

(0)im
 + 2R1 (1) (G − H) 




1 − 4 ⋅ 

R2 (1)
R1 (1)








 + 

√p  B (0)
√p  + 2χk




 . (71)

The solutions obtained allow one to calculate the dependences of the temperature in a well on different pa-
rameters. By way of example, we present formulas for the temperature in a well in the zero and first approximations
for fairly small times k C 1:

724



T
(0)

 = 
2R1 (1) (G − H)

χ
 









√ t

π
 − 

1

4χ
 [1 − exp (4χ2

t) erfc (2χ √t )]









 ,   r < 1 , (72)

T
(1)

 = 
G − H

4χ
 R1 (1) 













2r

2
 − 4χt + 

1

2χ



 exp (4χ2

t) erfc (2χ √t ) − 2 √ t

π
 + 1 − 4 ⋅ 

R2 (r)
R1 (1)

 +

+ 



4 ⋅ 

R2 (1)
R1 (1)

 − 1



 [1 − exp (4χ2

t) erfc (2χ √t )] + B (0) exp (4χ2
t) erfc (2χ √t )




 . (73)

According to (68)–(71), the zero approximation determines the average values of the temperature, and the radial distri-
bution of the temperature in the well is determined by the first approximation.

For small values of the parameter p or large times the relation between the Bessel functions k C −{√p [C +
ln (√p  ⁄ 2)]}−1 is fulfilled. Using this expression, one can obtain simple asymptotic formulas for large times (C =
0.577 is the Euler constant):

T
(0)

 = 
R1 (1) (G − H)

2χ
 (ln 4t − C) ,   r < 1 , (74)

T
(1)

 = 
G − H

4χ
 R1 (1) 




(r2

 − 1) 
1

2χt
 + 4 ⋅ 

R2 (1) − R2 (r)
R1 (1)

 − 
2R1 (r1) − r1

2

t




 . (75)

From expression (65) follows the stationary temperature profile in the well

T
(1)

 = 
G − H

χ
 [R2 (1) − R2 (r)] . (76)

The expressions obtained by the asymptotic method allow one to calculate the temperature fields in a well.
Figure 1 shows the calculated dependences of the relative temperature T

~ (0) = T(0)/(G − H) on the dimensionless time
in the zero approximation for laminar flows of water with χ = 0.6, oil with χ = 1.3, and methane with χ = 10 in a
well with r < 1. The dependences obtained in the approximation of small times (72) and large times (74) are shown

Fig. 1. Dependence of the relative temperature T
~ (0) = T(0)/(G − H) on the di-

mensionless time: χ = 0.6 (1, 2), 1.3 (3, 4), and 10 (5, 6) [1, 3, 5) in the
large-time approximation; 2, 4, 6) in the small-time approximation].
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respectively by the dashed and solid lines. Analysis of the curves obtained shows that the small-time approximation
provides satisfactory results for the dimensionless times t < 1 and the large-time approximation should be used for
practical calculations at t > 1. Note that the temperature of the gas or oil flowing in a well can be calculated with a
high accuracy at t < 10 with the use of the small-time approximation.

Figure 2 shows the radial temperature profile of a laminar water flow in a well. In this case, the temperature
profiles for small times (t < 1, dashed curves) were calculated using the first small-time approximation (73) and the
temperature profiles for t > 1 were calculated using the first approximation for large times (75). It is seen from this
figure that the drawback of the first approximation is that the temperature determined with it is dependent on the ra-
dial coordinate at small times. This points to the fact that the first approximation should be used for fairly large times,
which is bound to be in accordance with the method used for solving the problem.

Thus, it has been shown that the distribution of the temperature fields over the cross section of a well can be
estimated using asymptotic methods, which is of great practical importance.

NOTATION

A1, A2, B, G, H, Q1, Q2, Q3, R1, R2, R3, auxiliary functions and constants; a1r, radial heat-conductivity coef-

ficient of the rock, m2/sec; C, Euler constant; C1, integration constant; c, c1, specific heat of the liquid and the rock,

respectively, J/(K⋅kg); D, depth of the well, m; g, free-fall acceleration, m2/sec; K0(x), K1(x), modified Bessel func-

tions; Pe, Peclet parameter; p, parameter of the Laplace–Carson transform; Q(r, t), dimensionless function of the den-

sity of heat sources; qd, q1, densities of heat sources, J/(sec⋅m3); R(r), radial velocity-distribution function; r0, radius

of the well, m; rd, zd, and r, z, dimensional and dimensionless cylindrical coordinates; T, T1, dimensionless tempera-

tures of the liquid flow and the rock; t, dimensionless time; v(r), z coordinate of the velocity-field vector of the liquid,

m/sec; v0, normalization factor of the velocity-field vector of the liquid or average velocity of the liquid, m/sec; Γ,

geothermal gradient, K/m; δi,j, Kronecker delta; ε, asymptotic expansion parameter; λr, λr1, radial heat-conductivity co-

efficients of the liquid and the rock, W/(K⋅m); θ, θ1, temperatures of the liquid and the surrounding rocks, K; θ0, nor-

malization temperature factor, K; θ01, natural temperature of the rock at the origin of coordinates, K; ρ, ρ1, densities

of the liquid and the surrounding rocks, kg/m3; τ, times, sec; η, adiabatic coefficient, K/Pa; γ, ratio between the radius

of the well and its depth; χ, relative heat capacity per unit volume erfc (x) = 
2

√π
 ∫ 
x

∞

exp (−u2)du. Subscripts: 0, definite

Fig. 2. Radial profiles of the relative temperature T
~

 = [T1(r) − T1(r = 1)]/
(G − H) in a laminar water flow in the well for large times [t = 100 (1), 3 (2),
and 1 (3)] and small times [t = 0.1 (4), 0.05 (5), and 0.01 (6)].
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value of a variable; 1, surrounding rock; d, dimensional; i, ordinal number; r, z, directions; w, water; im, image; the
superscript in parentheses corresponds to the ordinal number of the expansion; prime, integration variable.
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